


Bildungs- und Kulturdepartement

Elemente des Kompetenzaufbaus

Weitere Informationen zu den Elementen des Kompetenzaufbaus sind im Kapitel Überblick zu finden.

Impressum

Herausgeber: Kanton Luzern, Dienststelle Volksschulbildung

Kellerstrasse 10, 6002 Luzern www.volksschulbildung.lu.ch

Verfasser: Dorothee Brovelli, Markus Wilhelm

Institut für Fachdidaktik Natur, Mensch, Gesellschaft, PH Luzern

Titelbild: Photo by Shahadat Rahman on Unsplash

Copyright: Alle Rechte liegen beim Bildungsdepartement des Kantons Luzern.

Redaktion: Andrea Renggli, Tina Ammer

Inhalt

Bedeutun	g und Zielsetzungen	2
Didaktiscl	he Hinweise	3
Hinweise	zur Beurteilung	5
MINT.1	Gesundheitswissenschaften und Medizinaltechnik untersuchen, entwickeln und strukturieren	6
MINT.2	Materialwissenschaften und Verfahrenstechnik entwickeln, austauschen und managen	7
MINT.3	Informationswissenschaften und Kommunikationstechnik untersuchen, austauschen und strukturieren	8
MINT.4	Geomatik und Bauwesen untersuchen, entwickeln und realisieren	9
MINT.5	Umweltwissenschaften und Umwelttechnik strukturieren, austauschen und realisieren	10
MINT.6	Maschinenbau und Elektrotechnik untersuchen, realisieren und managen	11

Bedeutung und Zielsetzungen

Situierung von MINT

Das Wahlpflichtfach MINT (Mathematik, Informatik, Naturwissenschaften und Technik) ist ein Integrationsfach, welches mehrere Disziplinen vereint. In Anlehnung an von Arx und Hollenstein (2017) sowie die Ansprüche an das Wahlpflichtfach MINT für die Volksschule des Kantons Luzern können folgende Eckpunkte der Situierung definiert werden:

- Ergänzung, Weiterentwicklung und Vertiefung der Kompetenzen des Lehrplans 21.
- Trans- und interdisziplinäre Berücksichtigung von Inhalten aus allen relevanten Disziplinen (Mathematik, Biologie, Chemie, Physik, Informatik, Technik).
- Problemlösefähigkeit im Zusammenhang von naturwissenschaftlichen, informatischen und/oder technischen Bereichen fördern.
- Vorbereitung der Jugendlichen auf weiterführende Schulen bzw. auf eine Berufslehre im naturwissenschaftlich-informatisch-technischen Bereich
- Interessensförderung an naturwissenschaftlichen, informatischen und technischen Themen. Siehe auch Dokument: <u>bit.ly/UnterrichtMINT</u>

Bezug zum Lehrplan 21

Der Lehrplan des Wahlpflichtfachs MINT erweitert Kompetenzen des Lehrplans 21. Insbesondere werden zahlreiche der in den MINT-Fächern erlernten Denk-, Arbeitsund Handlungsaspekte des Grundanspruchs vertieft. Thematisch öffnet der Lehrplan MINT bewusst neue Themenfelder.

Die im Lehrplan MINT erwähnten Querverweise sind nicht vollständig, da je nach inhaltlicher Ausrichtung unterschiedliche Bezüge hergestellt werden können.

Didaktische Hinweise

Kompetenzbereiche

Es werden sechs MINT-Kompetenzbereiche unterschieden:

- 1. Gesundheitswissenschaften und Medizinaltechnik
- 2. Materialwissenschaften und Verfahrenstechnik
- 3. Informationswissenschaften und Kommunikationstechnik
- 4. Geomatik und Bauwesen
- 5. Umweltwissenschaften und Umwelttechnik
- 6. Maschinenbau und Elektrotechnik

Die Auswahl der Themenfelder erfolgte im Hinblick auf eine grosse Breite an MINT-Disziplinen, wie sie in den Berufsbranchen und Studiengängen im MINT-Bereich vertreten ist. Damit soll ein Bezug zur Berufswelt erleichtert und eine Abgrenzung von den bestehenden MINT-Schulfächern ermöglicht werden. Wo möglich wurden eine wissenschaftliche und eine technische Disziplin genannt.

Denk-, Arbeits- und Handlungsaspekte

Denk-, Arbeitsund Handlungsaspekte MINT Naturwissenschaftliche Erkenntnis in der Technik nutzen, kreatives Entwickeln von Vorgehensweisen bzw. Lösungsansätzen, technische Lösungen naturwissenschaftlichen Verstehen nutzen, transdisziplinäres Arbeiten (inkl. Citizen Science), interdisziplinäres Arbeiten (Fachund Funktionsgruppen), mathematisieren naturwissenschaftlich-technischer Erkenntnisse.

Der Lehrplan MINT stützt sich auf das RIASEC-N Modell (Wentorf, Höfler und Parchmann 2015).

	Handlungsaspekte u.a. in Anlehnung an Holland (1985), Wentorf, Höffler und Parchmann (2015)	Beispiele spezifischer MINT-Tätigkeiten
R (realistic) praktisch-technisch	Messungen durchführen, etwas herstellen, Apparaturen aufbauen	naturwissenschaftliche Erkenntnisse in der Technik nutzen
I (investigative) untersuchend-forschend	kognitive, intellektuelle und analytische Tätigkeitsmuster Ergebnisse aus Experimenten auswerten, experimentelle Daten verstehen komplizierte Rechnungen lösen Ursachen untersuchen Maschinen verbessern, optimieren, konstruieren	technische Lösungen zum naturwissenschaft- lichen Verstehen nutzen Mathematisieren natur- wissenschaftlich-techni- scher Erkenntnisse
A (artistic) gestaltend-kreativ	kreative Ansätze, Lösungswege und Interpretationen neue Instrumente entwickeln, Forschungsansätze entwickeln, nach ästhetischen Kriterien designen, Strukturen zeichnerisch darstellen	kreatives Entwickeln von Vorgehensweisen bzw. Lösungsansätzen
S/N (social/networking) gemeinschaftlich-unter- stützend	gesellschaftliche, soziale Implikationen mit Wissenschaft in Betracht ziehen betreuen, lehren Austausch mit anderen Wissenschaftler*n/innen, Gedanken mit anderen vergleichen	transdisziplinäres Arbeiten (inkl. Citizen Science)
E (enterprising) führend-unternehme- risch	neues Wissen aushandeln, neue Erkenntnisse in Wirt- schaftsprozesse transferieren Arbeitsgruppe leiten, Gelder einwerben, Zeitschriftenar- tikel verfassen, Projekte managen und präsentieren	interdisziplinäres Arbeiten (Fach- und Funktionsgruppen)
C (conventional) ordnend-verwaltend	Verwaltungsaufgaben erledigen, Abrechnungen erstellen Material ordnen und verwalten, Informationen suchen und strukturieren, Messdaten aufschreiben	interdisziplinäres Arbeiten (Fach- und Funktionsgruppen)

 $\textit{Abb. 1:} \ \, \text{MINT-Handlungsaspekte in Anlehnung an das RIASEC-Modell}$

	R	I	Α	S/N	E	С
	Realistic realisieren	Investigative untersuchen	Artistic entwickeln	Social/Networking austauschen	Enterprising managen	Conventional strukturieren
Gesundheitswissenschaften & Medizinaltechnik						
Materialwissenschaft & Verfahrenstechnik						
Informationswissenschaften & Kommunikationstechnik						
Geomatik & Bauwesen						
Umweltwissenschaft & Umwelttechnik						
Maschinenbau & Elektrotechnik						

Abb. 2 MINT-Kompetenzmodell mit Schwerpunkten im Rahmen des vorliegenden Lehrplans

Methodische Umsetzung

In der Umsetzung des Lehrplans MINT geht es auch darum, verschiedene Einblicke in mathematisch-informatische bzw. naturwissenschaftlich-technische Berufsfelder zu gewinnen und die dort zur Anwendung kommenden Methoden kennen zu lernen. Aus diesem Grund sollten im Unterricht Berufsleute aus dem MINT Bereich porträtiert werden.

Hinweise zur Beurteilung

Beurteilen

Das Beurteilen von Lernprozessen und Lernergebnissen bezieht sich auf die im Lehrplan festgehaltenen Kompetenzen. Grundlage für Beurteilung sind die Kompetenzerwartungen. Diese Kompetenzerwartungen müssen zu Beginn der Lerneinheit genau definiert werden, damit klar ist, was die Schülerinnen und Schüler am Ende mindestens können und wissen müssen. Die Kompetenzerwartungen lassen sich aus den hier vorliegenden Kompetenzen bzw. Kompetenzstufen ableiten. Weil aber die Lernenden selbst verstehen müssen, worum es geht, kann es sinnvoll sein, Kompetenzerwartungen aus der Sicht der Schülerinnen und Schüler zu formulieren (ich kann...) und sie zu Beginn der Lerneinheit miteinander zu klären.

Beurteilungsgegenstände

Für das Wahlpflichtfach MINT wird vorgeschlagen, die Beurteilung in ergebnisorientiert und prozessorientiert zu unterteilen. Unter ergebnisorientierte Beurteilungen fallen die beiden Typen Produkte und Lernkontrollen, unter prozessorientierte Beurteilungen die beiden Formen Arbeitsprozesse und Lernprozesse. Diese Struktur hilft, ein ausgewogenes Beurteilungsmosaik zu erstellen, das die Vielfalt des Fachs sichtbar macht und der Entwicklung von Wissen und Können gerecht wird.

Ergebnisorientierte Beurteilung (Produkte und Lernkontrollen)

Zum Beispiel:

- Dokumentationen
- mündliche und/oder schriftliche Präsentationen
- Erstellen von Protokollen zu Beobachtungen und Experimenten sowie von Modellen oder anderen Objekten
- schriftliche Texte
- schriftliche Tests
- mündliche Prüfungen

Prozessorientierte Beurteilung (Lern- und Arbeitsprozesse)

Zum Beispiel:

- Beobachtungen im Unterricht
- Lernportfolio/Lernjournal
- Lerngespräch
- Reflexion
- Teilprodukt
- Durchführung eines Experiments bzw. einer Erkundung
- Realisierung einer Recherche

MINT.1 Gesundheitswissenschaften und Medizinaltechnik untersuchen, entwickeln und strukturieren

	1.	Die Schülerinnen und Schüler können pharmazeutische oder medizinaltechnische Anwendungen auf chemische, biologische und	Querverweise NT.1.1 NT.7.1 NT.7.2 NT.7.4
MINT.1	.1	Die Schülerinnen und Schüler	
3	а	» können Medikamente oder medizinaltechnische Errungenschaften (z.B. Implantate, Diagnosegeräte) nach biologischen, chemischen oder physikalischen Grundprinzipien ordnen und strukturieren (z.B. Wie kann eine Apotheke Ihre Medikamente ordnen?).	
	b	» können ein pharmazeutisches oder medizinaltechnisches Phänomen aus der biologischen, chemischen und physikalischen Perspektive analysieren (z.B. Wirkung von Antaziden im Magen-Darm).	
	С	» können im Team Laborexperimente zu einem pharmazeutischen oder medizinaltechnischen Thema mit Unterstützung planen, durchführen und auswerten (z.B. Wie stelle ich Ingweröl als Heilmittel her?).	

	2.		Die Schülerinnen und Schüler können für eine Problemstellung aus dem Gesundheitsbereich Lösungen entwickeln.	Querverweise
MINT.	1.2		Die Schülerinnen und Schüler	
3	а	»	können zu einem pharmazeutischen oder medizinischen Problem Informationen suchen und darstellen.	
	b	»	können sich eine pharmazeutische oder medizinaltechnische Fragestellung untersuchend-forschend erschliessen (Was für eine Schutzhülle braucht eine Antibiotikatablette, damit sie erst im Darm wirkt?).	
	С	»	können im Team für die bisher bearbeitete pharmazeutische oder medizinaltechnische Problemstellung Lösungsvorschläge entwickeln und darstellen (z.B. Radiosendung erstellen zur Beantwortung der Frage: Welche Verabreichungsformen von Antibiotika gibt es?).	

11.02.2020

Materialwissenschaften und Verfahrenstechnik MINT.2 entwickeln, austauschen und managen

	1.	Die Schülerinnen und Schüler können technische Produkte konstruieren, testen und hinsichtlich Materialeigenschaften oder Verfahrenstechnik optimieren.	
MINT.	2.1	Die Schülerinnen und Schüler	
3	а	» können im Labor beim Durchführen technischer Verfahren (z.B. Seifenproduktion, Dämmstoffherstellung) und bei der Auswertung von Labordaten exakt und strukturiert arbeiten.	
	b	» können die erstellten Produkte (z.B. Dämmstoff aus Pilzmyzel, Seife aus Baumnussöl) nach vorgegebenen Kriterien testen.	
	С	» können nach Lösungen für die sich ergebenden Probleme suchen und die angewendeten technischen Verfahren optimieren.	
	d	» können die erworbenen Fähigkeiten und Fertigkeiten hinsichtlich Produkterstellung bzw. die Produktionsverfahren auf andere Materialien bzw. Prozesse übertragen.	

	2.	Die Schülerinnen und Schüler können für Problemstellungen aus dem Bereich der Verfahrenstechnik marktfähige Lösungen entwickeln.	Querverweise NT.1.2 NT.1.3
MINT.	.2.2	Die Schülerinnen und Schüler	
3	а	» können arbeitsteilig in Kleingruppen eine virtuelle Unternehmung aufbauen, die im Bereich der Verfahrenstechnik (z.B. Seifenproduktion, Dämmstoffherstellung) arbeitet.	
	b	» können ihr gewähltes Verfahren bzw. ihre Unternehmung hinsichtlich Nachhaltigkeit beurteilen und verbessern.	BNE - Natürliche Umwelt und Ressourcen
	С	» können Erkenntnisse zum Herstellungsprozess und zur Nachhaltigkeitsanalyse kritisch hinterfragen.	BNE - Natürliche Umwelt und Ressourcen

Kanton Luzern

MINT.3 Informationswissenschaften und Kommunikationstechnik untersuchen, austauschen und strukturieren

	1.	Die Schülerinnen und Schüler können informations- und kommunikationstechnische Anwendungen auf mathematische und informatische Grundlagen zurückführen.	Querverweise MA.3.B.2 NT.1.2 MI.2.1 MI.2.3
MINT.3	3.1	Die Schülerinnen und Schüler	
3	а	» können typische Verfahren der Informationswissenschaften und Kommunikationstechnik zur Lösung von Problemen anwenden.	NT.1.2.d
	b	» können einfache Verfahren der Informationswissenschaften und Kommunikationstechnik in Bezug auf Sicherheit untersuchen.	MA.3.B.2.g MI.2.1.f MI.2.3.i
	С	» können ein einfaches Verfahren der Informationswissenschaften und Kommunikationstechnik (weiter)entwickeln.	MI.2.3.i

	2.	Die Schülerinnen und Schüler können informations- und kommunikationstechnische Anwendungen in ihrem gesellschaftlichen Kontext beurteilen.	Querverweise MI.1.1 MI.1.4 MI.2.3
MINT.3.2		Die Schülerinnen und Schüler	
3	а	» können sich kritisch mit gesellschaftlichen und sozialen Implikationen der Informations- und Kommunikationstechnik auseinandersetzen.	
	b	» können eigenes Verhalten im Umgang mit Informationswissenschaften und Kommunikationstechnik reflektieren.	MI.1.4.c MI.1.1.e
	С	» können aktuelle Verfahren der Informations- und Kommunikationstechnologien nach Sicherheit ordnen.	MI.2.3.n

MIN.

MINT.4 Geomatik und Bauwesen

untersuchen, entwickeln und realisieren

Querverweise 1. Die Schülerinnen und Schüler können die Gestaltung und Nutzung von NT.1.3 NT.4.1 privaten oder öffentlichen Räumen anhand vordefinierter Kriterien erfassen und analysieren. NT.5.1 MINT.4.1 Die Schülerinnen und Schüler ... » können mithilfe von analogen oder digitalen Methoden räumliche Daten erfassen und auswerten (z.B. Geoinformationssysteme, Navigationssysteme, Kartierung, Energiebedarf von privaten und öffentlichen Gebäuden). b >> können Bedürfnisse bei der Nutzung von privaten und öffentlichen Räumen erfassen sowie die Gestaltung von Räumen anhand konkreter Beispiele analysieren (z.B. Heizung, Strombedarf, Beleuchtung, Sicherheit). » können ihr Wissen über Nutzungsbedürfnisse transferieren, um geeignete С Massnahmen bei der Raumgestaltung zu entwickeln (z.B. Wohnraum planen, öffentliche Räume gestalten).

	2.		Die Schülerinnen und Schüler können für Problemstellungen aus dem Bereich Bauwesen oder Geomatik Lösungen entwickeln.	Querverweise MA.3.C.2 NT.1.2 NT.1.3 NT.4.1 NT.4.2 MI.2.2
MINT.	4.2		Die Schülerinnen und Schüler	
3	а	»	können Informationen und Daten zu einer Problemstellung aus dem Bereich Geomatik oder Bauwesen suchen und aufbereiten (z.B. ökologischer Fussabdruck verschiedener Wohnformen; Georeferenzierung wie Geotagging).	
	b	»	können sich eine Fragestellung aus dem Bereich Geomatik oder Bauwesen untersuchend-forschend erschliessen (z.B. Vermessung, Gebäudetechnik, Gebäudeautomation, Baustoffe, Statik, Dämmung, Energieeffizienz).	
	С	»	können unterschiedliche baulich-technische Anwendungen und Massnahmen lösungsorientiert gestalten, darstellen und präsentieren (z.B. Smarthome, Minergie, Schalldämmung).	BNE - Wirtschaft und Konsum

MINT.5 Umweltwissenschaften und Umwelttechnik

strukturieren, austauschen und realisieren

	1.	Die Schülerinnen und Schüler können ein Ökosystem und Einflüsse NT.9.1 NT.9.2 NT.9.3 NT.9.3	.e
MINT.	5.1	Die Schülerinnen und Schüler	
3	а	» können im Feld bei der Erhebung von Umweltdaten mit mobilen Laborgeräten (Mobile Devices) exakt und strukturiert arbeiten.	
	b	» können Felddaten mathematisch und informatisch strukturiert aufbereiten, damit ein inhaltlicher Mehrwert entsteht.	
	С	» können die ausgewerteten Daten interpretieren und umweltrelevante Ursachen der erkannten Wechselwirkungen benennen. BNE - Natür Umwelt und Ressourcen	

	2.	Die Schülerinnen und Schüler können im Austausch eine umweltwissenschaftliche Fragestellung klären.	Querverweise NT.9.1 NT.9.2
MINT.	5.2	Die Schülerinnen und Schüler	
3	а	» können arbeitsteilig in Kleingruppen Felddaten erheben und auswerten.	
	р	» können aufbereitete Umweltdaten mit anderen Schülerinnen und Schülern bzw. mit Forschenden austauschen, vergleichen und den Datenaustausch für die eigene Untersuchung nutzen.	
	С	» können Erkenntnisse aus der eigenen umweltwissenschaftlichen Untersuchung präsentieren.	BNE - Natürliche Umwelt und Ressourcen

Kanton Luzern

MINT.6 Maschinenbau und Elektrotechnik

untersuchen, realisieren und managen

Querverweise 1. Die Schülerinnen und Schüler können technische Anwendungen aus dem Bereich Maschinenbau oder Elektrotechnik auf naturwissenschaftliche und MA.3.C.2 informatische Grundlagen zurückführen. MI.2.3 MINT.6.1 Die Schülerinnen und Schüler ... » können mit Hilfe elektrischer (Mess-)Geräte analoge und/oder digitale Daten aus der Umwelt erfassen und verarbeiten (z.B. Sensoren, Aktoren). b » können den Nutzen und die gesellschaftlichen Auswirkungen technischer Entwicklungen anhand konkreter Beispiele analysieren (z.B. Robotik, Künstliche Intelligenz, Gebäudeautomation). » können das Wissen über naturwissenschaftliche und informatische Gesetze auf С Beispiele technischer Anwendungen transferieren, um deren Aufbau und Funktionsweise zu verstehen (z.B. Robotik, Fahrzeuge, Elektrogeräte im Haushalt).

	2.	•	Die Schülerinnen und Schüler können für Problemstellungen aus dem Bereich Maschinenbau oder Elektrotechnik Lösungen entwickeln.	Querverweise NT.1.2 NT.1.3 NT.5.3 M1.2.2
MINT.	6.2		Die Schülerinnen und Schüler	
3	ē	a »	können Informationen und Daten zu einer Problemstellung aus dem Bereich Maschinenbau oder Elektrotechnik suchen und aufbereiten.	
	b	» »	können sich eine Fragestellung aus dem Bereich Maschinenbau oder Elektrotechnik untersuchend-forschend erschliessen (z.B. Automatisierung und Künstliche Intelligenz, Computertechnik, Antriebstechnik, Informationstechnik, Elektronik).	
	C	»	können im Team Prototypen technischer Anwendungen im Bereich Maschinenbau oder Elektrotechnik lösungsorientiert gestalten bzw. optimieren, darstellen und präsentieren.	